Electron cloud effect

- None of the present Fermilab machines has this problem
- However, a parameter comparison of an upgraded MI with other machines brings up the concern:
 - MI: proton, 3e11, 53 MHz, 19 ns spacing
 - SPS: proton, 1e11, 200 MHz, 25 ns spacing
 - RHIC: Au+79, 1e9, 28 MHz, 108 ns spacing
- Experts: M. Furman, F. Zimmermann, K. Ohmi
- Visit by Miguel in April for a crash course
- Form an in-house team: Ostiguy, Zhang (simulation), Ng (instabilities)

Electron Cloud Problem: SPS Vacuum

Electron Cloud Problem: RHIC Vacuum

- MI capture scheme, adiabatic vs. rf capture (Ostiguy)
- Fast chopping
 - Laser (Tomlin)
 - LANL chopper for SNS (S. Kurrenoy)
- Survey of aperture
 - > Dynamics aperture of the ring: 127±4 pi
 - Physical aperture at Lambertson area (Chou, Johnson)
 - Present: 40 pi
 - With large aperture quad: 80 pi
 - Physical aperture at MI-10 in the proton driver era
 - Presenr dsign: 60 pi
 - New design: > 100 pi (Drozhdin)
 - Physical aperture at Kickers (TBA)

- Survey of impedance
 - Tune shift measurement (Marchionni)
 - Cavity measurement (Wildman)
 - Need a program for more measurements (MID)
- Optimize MI-10 injection scheme
 - Foil (Lackey, Moehs, Tomlin)
 - Painting (Drozhdin)
 - Clearance (Drozhdin)
 - Operational considerations
 - Many other issues
- Injection/transition crossing requirements, which give guidance to the requirement of linac rf control (Ostiguy)
- Tracking from injection through transition crossing (Lucas, Yoon)

- LCW activation (Kostin)
- MI-40 dump capability (Kostin)
- Instabilities (Ostiguy, Ng, Chou)
- 3D space charge simulation (Yoon)
- MI beam studies (MID)
- Large aperture quad (TD/AD, first magnet May 23)
- Transition crossing and gamma-t jump implementation (Ostiguy, Chou)
- Collimators (Drozhdin, Brown)
- RF
 - Two-PA upgrade (Reid)
 - New rf system (Wildman, Chen, Wu, Qian)

- Effect of orbit errors (e.g., power supply ripples) on collimators (Drozhdin)
- Performance under off-normal condition (e.g., very large transverse emittance growth in the linac) on collimation, foil scattering and painting (team work)
- Mitigation plan of blackbody stripping
 - > H⁰ intercept (Kostin)
 - Cold beam screen (Harding)
 - Other ideas
- Diagnostics requirement, e.g., fast beam loss monitors (TBA)

Recommendations and Action Items: General

- 3 ms vs. 1 ms (team work)
 - Lorentz detuning
 - Microphonics
 - SRF performance
 - Foil scattering and heating
 - Injection loss
 - Activation in the injection area
- One-day mini-review of transport line and MI injection (TBA)

We need a prioritized plan for executing this list